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Abstract— As the usage of bi-copters increases in military
and civilian fields, the demand for reliable bi-copters is on the
rise. This study focuses on controlling a bi-copter under rotor or
servo stuck failure. A relaxed hover solution is derived for the
bi-copter, by solving an optimization problem subject to rotor
and servo stuck failures. The solution is used for designing a
reduced attitude controller based on linear quadratic regulator
(LQR). To ensure hover capability, we introduce a position
controller based on a cascaded-PID. The numerical simulations
are conducted to demonstrate that position control is possible,
even with complete rotor or servo stuck failure, by driving the
bi-copter into relaxed hover state through the abandonment
of the yaw channel. Meanwhile, the FTC scheme is examined
under constant wind disturbances and uncertainties in the
rotational damping parameters.

I. INTRODUCTION

Over the past decade, multicopters have become ubiqui-
tous in our daily lives [1]. Recently, bi-copters have been
gaining popularity in agriculture and photography. Unlike
multicopters, bi-copters have fewer rotors, which means
less redundancy in the propulsion system. This makes their
fault tolerant control (FTC) more challenging. Besides the
rotor failure, the servos stuck failure (e.g., [2],[3],[4]) is
another safety problem for bi-copters. With the increasing
deployment of bi-copters, it is crucial to improve their safety
and reliability. However, there is a lack of relevant research
on the topic.

A bi-copter is equipped with four actuators. It uses two
rotors to produce lift force and two servos to tilt the rotors.
The bi-copter flies forward or backward by tilting rotors in
the same direction, while pitch torque is generated simulta-
neously. Tilted rotors in opposite directions generate torque
in the yaw channel. Similar to multicopters, roll torque is
generated by the different thrusts of the two rotors. Moreover,
some studies focus on a bi-copter with wings (e.g., [5] and
[6]). This type of bi-copters is classified as hybrid UAVs in
[7]. This study mainly focuses on a bi-copter without wings,
shown in Fig. 1. It features on its compact size and efficiency
[8].

FTC is a challenge in UAVs for its applications. The
majority of studies focus on multicopters. A relaxed hover
solution for multicopters is derived in [9]. The solution is
an equilibrium point where the multicopter gives up yaw
control to keep altitude and horizontal position controllable.
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Fig. 1. 3D Model of a Bi-copter

The study demonstrates the possibility of flying a quadcopter
despite complete rotor failure. Furthermore, a uniform pas-
sive FTC scheme of quadcopters subject to one, two, or three
rotor failure is proposed in [10]. It is worth noting that the
rotors’ failure is modeled as a disturbance. As a result, the
rotor failure information is unnecessary for FTC. Another
study [11] focuses on a failed quadcopter performing upset
recovery from extreme initial conditions and tracking agile
trajectories. Regarding a hexarotor with rotor failure, the
studies by [12] and [13] are relevant.

It is worth noting that the inertia parameters of UAVs
significantly influence their controllability in a self-rotation
state, as described in [14]. For the single rotor vehicle in
[15], the inertia parameters were meticulously designed using
Monte Carlo analysis to ensure sufficient robustness. Similar
results can also be observed for quadcopters in [16]. Both
of them resemble spinning disks with natural stability [17].
However, in our platform, the maximum inertia channel of
the bi-copter is around roll, while the minimum is around
pitch. A significant roll torque is generated when the bi-
copter suffers a rotor failure, causing undesired rolling. Ad-
ditionally, a tiltable thrust direction leads to a more complex
control method, but offers greater potential for FTC. These
make FTC more challenging on a bi-copter. Overall, to the
best of our knowledge, there is no study on the FTC of bi-
copters subject to rotor or servo stuck failure.

This paper focuses on controlling a bi-copter subject to
a rotor or servo stuck failure, aiming to indicate the feasi-
bility of position control. Firstly, we establish the dynamics
model and failure model of the bi-copter. Then, we derive
a relaxed hover solution [9] for the bi-copter, the reduced
attitude controller and position controller are presented as
well. Finally, numerical simulations of a controllable bi-
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copter with a failed rotor or servo are demonstrated. The
contributions of this paper are summarized as two aspects.

• A relaxed hover solution for a bi-copter is derived for
the first time. An optimization problem is formulated
to obtain the solution, considering actuator limitation.
Both rotor and servo failure are accommodated by the
scheme.

• Based on the solution, a position controller is designed
with simulation to show the effectiveness.

II. PROBLEM FORMULATION

A. Modeling

Fig. 2. Diagram of a Bi-copter

Referring to Fig. 2 for a diagram of the bi-copter, the
body frame {xb, yb, zb} and the Earth frame {xe, ye, ze} both
follow the right-handed coordinate system. The origin of the
body frame, denoting the center of mass of the bi-copter,
is displayed in the diagram. Vector g =

[
0 0 g

]T
is the

acceleration vector of the gravity in the Earth frame. The
attitude of the bi-copter is described by Direction Cosine
Matrix (DCM) denoted as Reb ∈ R3×3. The attitude Reb
describes the rotation from the body frame to the Earth
frame. Vector p ∈ R3 denotes the position of the bi-copter
in the Earth frame, and its velocity is expressed as v ∈ R3.
The angular velocity, denoted by ω =

[
p q r

]T ∈ R3,
is expressed in the body frame. The dynamics equations of
bi-copter are

ṗ = v

v̇ = g +
1

m
Rebf +

1

m
dlinear

Ṙeb = Reb[ω]×

Jω̇ = τ + drot − ω × (Jω),

(1)

where

fi =

fi,xfi,y
fi,z

 =

Ti sin(αi)
0

Ti cos(αi)

 ,
τi = li × fi + (−1)ikτ fi, i = 1, 2

f = f1 + f2, τ = τ1 + τ2,

(2)

and

[ω]× =

 0 −r q
r 0 −p
−q p 0

 . (3)

The matrix J = diag (Jx, Jy, Jz) ∈ R3×3, assumed to be
diagonal when expressed in the body frame, represents the
entire inertia of the bi-copter; Ti is the force generated by
the i-th rotor; αi is the tilt angle of the i-th servo related to
the −zb axis. The rotation around the −yb axis is defined
as the positive direction of αi. The vector fi and τi are the
force and torque generated by i-th rotor in the body frame.
The scalar kτ represents the torque coefficient of the rotor
[18]. The length of the arm is denoted as b; the height of
the servo axis above the center of mass is represented by
h; vector li is the i-th rotor position in the body frame,
li =

[
0 (−1)i+1b −h

]T
. Term dlinear ∈ R3 represents

the disturbances expressed in the Earth frame, such as wind
disturbances; the term drot ∈ R3 represents the drag force
generated by the bi-copter’s angular motion. In study [9],
the air drag is modeled as

drot = −∥ω∥kairω, (4)

where kair = diag (kx, ky, kz) ∈ R3×3. Due to the dynamics
of the rotors, the thrust generated by the rotor cannot track
the commanded thrust without delay. A first-order inertial
model is adopted to approximate the behavior of a real rotor,
namely

τmṪi = Tc,i − Ti, Tc,i ∈
[
0, λiTmax,i

]
, (5)

where the rotor’s actual thrust is Ti; Tc,i represents the
commanded thrust generated by the controller; τm is the
rotor’s time constant indicating the bandwidth of the rotor;
Tmax,i is the maximum thrust of i-th rotor; λi is the efficiency
coefficient, 0 ≤ λi ≤ 1. In particular, the i-th rotor fails
entirely, when λi = 0. Similar to the rotor, the tilt servo is
also considered as a first-order inertial model, namely

τsα̇i = αc,i − αi, αc,i ∈
[
αmin,i, αmax,i

]
. (6)

The time constant of the tilt servo is denoted as τs, and
αc,i represents the commanded angle of the i-th servo.
The minimum and maximum limits of the i-th servo are
represented by αmin,i and αmax,i, respectively. When the
failure of i-th servo occurs, αmin,i = αmax,i = αfault,i, where
αfault,i denotes as the position of stuck angle of i-th servo.
Note that the non-minimum phase dynamics and the augular
momentum of the rotors are ignored. Typically, the bi-copter
has four command inputs, namely

u ≜
[
Tc,1 Tc,2 αc,1 αc,2

]T
. (7)

The system outputs are
[
pT vT ωT

]T
and R, and these

states could be measured or fused to obtain.

B. Objective

The control objective is to achieve efficient position con-
trol of a failed bi-copter, namely limt→∞ ∥pd(t)−p(t)∥ = 0,
subject to λ2 ∈ [0, 1] or αmin,2 = αmax,2 = αfault,2, where pd
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is the desired position. The objective implies that the failed
bi-copter could maintain its position in the space rather than
crashing. It is worth noting that this paper does not include
fault detection and diagnosis, as other studies have already
focused on this topic (e.g., [19],[20]).

III. CONTROLLER DESIGN

Similar to multicopters, the failed bi-copter must keep
the desired altitude to avoid crashing. We can abandon
the yaw control to achieve that. If the bi-copter tracks
the desired acceleration in average acceleration during self-
rotation rather than instantaneous acceleration, it indicates
that the bi-copter is in relaxed hover solution. To achieve
that, a controller scheme is described in this section.

A. Relaxed-Hover Solution of Bi-copter

We define that the self-rotation period is T ≜ 2π
∥ω∥ ,

where (·) represents that the system state is in equilibrium
condition. From (1), under the equilibrium condition, the
linear dynamics equation is rewritten as

1

T

∫ T

0

mv̇dt =
1

T

∫ T

0

(Reb(t)f +mg)dt. (8)

Note that dlinear is ignored in the derivation. Substituting
Reb(t) = Reb(0)e

[ω]×t into (8) results in

1

T

∫ T

0

mv̇dt =
1

T
Reb(0)

(∫ T

0

e[ω]×tdt

)
f +mg. (9)

Note that the rotation Reb(t) is derived with a constant
angular velocity ω. Let ω = ω, and utilizing Rodrigues’
formula [21], Equ. (9) is derived as

1

T

∫ T

0

mv̇dt =Reb(0)
ω

∥ω∥2
(p(f1,x + f2,x)− r(f1,z + f2,z))

+mg.
(10)

Let the left-hand side of (10) equal to the desired acceleration
ad. We have

L1 =Reb(0)
ω

∥ω∥2
(p(f1,x + f2,x)− r(f1,z + f2,z))

+mg −mad.
(11)

The attitude Reb(0) represents the initial attitude during self-
rotation. It could also be derived from ZYX Euler angles,
namely Reb (0) = Reb (ψ (0) , θ (0) , ϕ (0)), where ψ, θ, ϕ
denote as yaw, pitch and roll. According to (11), let L1 = 0,
the average acceleration equals to desired acceleration ad
under relaxed hover condition. However, only (11) is not
enough. To keep the stable roll and pitch angle, another
constraint of angular acceleration is introduced. From (1),
we have

L2 = ω̇ = J−1(τ + drot − ω × (Jω)). (12)

Equ. (12) indicates that a stable attitude is expected when
L2 = 0. Considering execution time and parameter un-
certainty, formulating them as a minimization problem is
more suitable than solving algebraic equations. Therefore,

the relaxed hover solution could be obtained by minimizing
Equ. (11) and Equ. (12), namely

γ =argmin
γ

∥ L1 ∥2W1
+ ∥ L2 ∥2W2

s.t. γmin ≤ γ ≤ γmax,
(13)

where γ ≜
[
ψ θ ϕ ωT T1 T2 α1 α2

]T
and γ ∈

R10 is the relaxed hover solution. Note that a state constraint
for the solution is introduced by γmin and γmax, aiming to
acquire an acceptable solution. Both W1 ∈ R3×3 and W2 ∈
R3×3 are weight matrices used to control errors for Equ.
(11) and Equ. (12). Note that an initial solution γinit ∈ R10

is provided as an iteration initial value before solving the
optimization problem. While a suitable γinit would aid in
problem-solving, in the presence of parameter uncertainty, a
predefined initial solution may not always be appropriate. In
this study, the system state is fed as the initial solution once
stable self-rotation is achieved, namely

γinit =

{
γ0, |enz| ≤ ϵ
γfeedback, |enz| > ϵ

. (14)

The selection strategy for γinit is depicted in (14), where
γ0 ∈ R10 represents the predefined relaxed hover solution
satisfying L1 = 0 and L2 = 0, γfeedback ∈ R10 is the initial
solution obtained from the current system state, and ϵ ∈ [0, 1]
is a threshold for switching.

B. Reduced Attitude System

In Section III-A, we address an optimization problem in
the form of Equ. (13) and obtain the relaxed hover solution
γ. In this section, we present the design of a reduced attitude
system utilizing γ as the bi-copter’s equilibrium point. In the
relaxed hover mode, the bi-copter rotates with a significant
angular velocity ∥ω∥ ≫ 0 and the yaw angle increases. Thus,
the traditional attitude representation (e.g., Euler angle or
rotation matrix) is not suitable. To address this issue, we
adopt the average thrust direction [9], namely

n =
ω

∥ω∥
. (15)

The vector n indicates the average thrust direction of the bi-
copter during self-rotation, and it is a unit vector of the self-
rotation axis expressed in the body frame. A new coordinate
frame {xc, yc, zc} called control coordinate frame [9] is
introduced, and axis zc coincides with n. The rotation matrix
Rcb ∈ R3×3 from the body frame to the control coordinate
frame satisfies

cn = Rcbn =
[
0 0 1

]T
, (16)

and Rcb is determined by

Rcb = I3 + [n×c n]× + [n×c n]
2
×

1

1 + nTcn
. (17)

So, the angular velocity in the control coordinate frame is
cω = Rcbω. (18)

Substituting the ω into (18) results in
cω = Rcbω =

[
0 0 ∥ω∥

]T
. (19)
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Furthermore, the desired average thrust direction end ex-
pressed in the control coordinate frame is written as

cnd = RcbRbe
end = Rce

end. (20)

The original control is to drive en = Rebn ≜[
enx

eny
enz
]T

tracking end, defined in the Earth frame.
However, the new objective is redefined as making the
vector cnd stabilizing to cn =

[
0 0 1

]T
in the control

coordinate frame, meaning that the average thrust direction
cnd aligns with cn. A two degrees of freedom attitude system
is established. As a result, the kinematics equation of cnd is
derived as

cṅd = Ṙce
end +Rce

eṅd. (21)

Term end represents the output of position control, whose
dynamics are slower than attitude controller. Thus, assuming
that end is close to the constant vector, and term eṅd could
be ignored. end changes more slowly than cnd due to attitude
coupling. Thus, Equ.(21) is rewritten as

cṅd = ṘT
ec

end =
(
Rec [

cω]×
)T end = − [cω]×

cnd. (22)

To obtain the dynamics equation of cω̇, we approximate it
by cω̇ = ω̇.

C. LQR Controller

Section III-B describes a reduced attitude representation
and its dynamics equation. Moreover, a Linear Quadratic
Regulator (LQR) [22] based control law is employed to reg-
ulate the reduced attitude system. Let cnd ≜

[
η1 η2 η3

]T

and cω ≜
[

cp cq cr
]T

. According to (1),(5),(6),(18),(22),
we choose the system state variable as

x ≜
[
η1 η2

cp cq cr T1 T2 α1 α2

]T
. (23)

The system dynamics equation of x is formulated as

ẋ = f(x,u). (24)

Then, the error state ∆x between the state x and equilibrium
state x is defined as ∆x = x− x; the error control input is
defined as ∆u = u − u, where u =

[
T 1 T 2 α1 α2

]T
.

Note that term x is a constant value, and the differential
equation of ∆x could be derived directly, namely

∆ẋ = A∆x+B∆u, (25)

where A = ∂f(x,u)
∂x

∣∣∣∣
x=x,u=u

,B = ∂f(x,u)
∂u . Applying the

LQR technique to the system (25), it is controllable as long
as rank (C(A,B)) = 9, where C (A,B) is the controllability
matrix of pair (A,B). System (25) is discreted using the
Tustin method. The state feedback controller is denoted as

u = u−K∆x, (26)

where the gain matrix K ∈ R4×9, obtained by solving
an Discrete-time Algebraic Riccati Equation (DARE) with
weight parameters Q ∈ R9×9 and R ∈ R4×4. However,
it is worth noting that the rotors’ thrust and servo angle
are required by the state feedback controller (26). We

could not obtain those states sometimes. A state predictor
is adopted to address this problem, which is similar to
virtual control channels predictor proposed in [16]. It can be
expressed in the form of actuator dynamics, shown in Equ.(5)
and Equ.(6). Thanks to the state predictor, the requirement
for force and angle sensors is eliminated. Nevertheless,
parameter mismatches could lead to errors in state prediction.

D. Postion Controller

In Section III-B and III-C , an LQR based reduced attitude
controller is designed utilizing a relaxed hover solution. We
combine reduced attitude control and position control to
achieve control over spatial position of the failed bi-copter.
Desired position pd is fed into the position controller, the de-
sired average thrust direction end and desired acceleration ad
are generated as the inputs of the reduced attitude controller.
The position controller adopts a cascaded-PID controller. The
desired acceleration ad is calculated by

vd = Kpp (pd − p) +Kpi

∫
(pd − p)

ad = Kvp (vd − v) +Kv i

∫
(vd − v),

(27)

where the vector vd is the desired velocity expressed in
the Earth frame; matrices Kpp,Kpi,Kvp,Kv i ∈ R3×3

are parameters of the position controller. Furthermore, the
desired average thrust direction is written as

end = − ad − g

∥ad − g∥
. (28)

Substituting ad into optimization problem (13) results in
a new relaxed hover solution γ. With this, a new LQR
gain matrix K can be solved, enabling the state feedback
controller to stabilize the system towards the new desired
acceleration ad.

IV. NUMERICAL SIMULATION AND ANALYSIS

In Section III, the relaxed hover solution is utilized for
controller design. The entire control strategy is presented,
including reduced attitude controller and position controller.
This section focuses on its validation, the numerical simula-
tions are conducted on Simulink [23].

A. Numerical Simulation Settings

The parameters of the bi-copter, obtained by identifying
a real bi-copter, are given in Table. I. The problem (13) is
solved with sqp [24] algorithm, and

W1 =diag (100, 100, 5000) ,W2 = diag (10, 10, 10) ,

γ0 =
[
0 1 − 0.85 − 23.56 − 11.21 9.68 9.57 0 0.78 0

]T
,

γmin =
[
−π − 1 − 1 − 28 − 28 − 28 0 0 αmin,1 αmin,2

]T
,

γmax =
[
π 1 1 28 28 28 λ1Tmax λ2Tmax αmax 1 αmax,2

]T
.

Note that the ϕ, θ and ω should be appropriately constrained,
and ϵ = 0.6. The weight matrices Q and R are set as

Q =diag (4000, 4000, 40, 40, 40, 100, 100, 100, 100) ,
R =diag (100, 100, 1000, 1000) .
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TABLE I
PARAMETERS OF BI-COPTER

Parameter Value
m(kg) 0.828
b(m) 0.14
h(m) 0.08
kτ (m) 0.00778
τm(s) 0.03
τs(s) 0.02

Tmax,i(N) 15
αmin,i(rad), αmax,i(rad) -1.0472,1.0472

J(kg · m2) diag(0.0084 , 0.0042 , 0.0063)
kair(N/(rad/s)) diag(0.0012 , 0.0002 , 0.0008)
ngyro(rad/s) N (0, 0.01)
naccel(m/(s/s)) N (0, 0.1)
nmag(Gauss) N (0, 0.02)
nGPS(m) N (0, 0.1)

For the position controller, its parameters are set as

Kpp = diag (1, 1, 1) ,Kpi = diag (0.05, 0.05, 0.05) ,

Kvp = diag (2, 2, 2) ,Kv i = diag (0.2, 0.2, 0.2) .

To ensure the controller’s robustness, the running frequency
should be selected appropriately, the LQR controller’s fre-
quency should be higher than that of the position controller,
due to its higher dynamics. Our control scheme is imple-
mented with the position controller, which includes solving
problem (13), running at 111Hz, while the reduced attitude
controller operates at 333Hz. This frequency is limited by the
Pulse Width Modulation (PWM) frequency of digital servos,
typically 333Hz. Additionally, to simulate the actual bi-
copter platform, sensors are also included, which are affected
by additive Gaussian noise in the simulations, For these
sensors, such as gyroscope, accelerometer, magnetometer,
GPS, their noise characteristics are defined correspondingly
in Table. I, and n(·) ∈ R represents the noise signal added to
the sensors’ ground truth. A state estimator [25] is employed
to fuse sensors’ data and provides information on position,
velocity, and attitude. It runs at 999Hz, which is three times
higher than the LQR controller’s frequency, as determined
by the sampling theorem [26]. Note that a first-order low-
pass filter with a time constant of τlpf = 0.04 is applied to
reduce the noise of solved γ. A bi-copter plant is deployed
at 2000Hz in numerical simulations. To demonstrate the
effectiveness of the simulation, three cases are investigated.
Specifically, for the case of servo stuck, the stuck angle
should be chosen appropriately. When the bi-copters maneu-
ver forward or backward, the servo instantaneously generates
a significant tilt angle, aimed at producing pitch torque. The
servos appear to be susceptible to failure. In this study, ±0.5
rad is chosen as the stuck angles.

B. Case 1: Robustness Analysis of Rotational Damping

Rotational damping parameters, specifically the param-
eters of air drag kair, as presented in Section II-A, have
a significant impact on the stability of self-rotation [16].
Unfortunately, kair is often not precisely available due to
aerodynamic factors. To verify the robustness subject to

(a
)

(b
)

Fig. 3. The Altitude and en Response of Monte Carlo Simulations with
Randomized kair: The bi-copter hovers at -10 meters with only the altitude
controller enabled. Subsequently, λ2 = 0 was injected, the loss of height
and convergence of en in the recovery process are depicted in this figure.
100 tests with randomized kair, where kx ∈ [0.00024, 0.006] , ky ∈
[0.00004, 0.001] , kz ∈ [0.00016, 0.004], were conducted. For ϵ in the
switching strategy (14), simulation results with ϵ = 1 and ϵ = 0.6 are
displayed in Row (a) and Row (b). Note that both simulations (a) and (b)
are performed with the same rotational damping parameters.

model uncertainty, Monte Carlo simulations are conducted
with randomized rotational damping parameters kair. Accord-
ing to Fig. 3, for all tests, our control scheme is able to
account for the uncertainty in rotational damping parameters
instead of resulting in a crash. An interesting phenomenon
can be observed by comparing en in (a) and (b). Clearly,
ϵ = 1 represents a constant initial solution for problem (13).
Enabling of γfeedback in the initial solution leads to better
convergence of en, indicating a faster recovery. Therefore,
the strategy (14) is beneficial for this FTC scheme.

C. Case 2: Position Control with Complete Rotor Failure

To further ensure the effectiveness of the controller, simu-
lations subject to complete rotor failure are performed first.
The simulation results are shown in Fig. 4. After fault
injection, to offset the torque generated by the single rotor,
the bi-copter experiences self-rotation with a significant
angular velocity to acquire gyro stability. Then, a stable en
is achieved. It is reasonable for the bi-copter with complete
rotor failure to hover with rotor thrust slightly exceeding
the bicopter’s gravity. Note that the en is disordered due
to the almost-zero angular velocity within the green area.
It is worth noting that the averaged force direction en
changes during the bi-copter maneuvers, aiming at trajectory
tracking. Furthermore, when subjected to wind disturbances,
the en points towards the direction of xe, and the tracking
errors change slightly. As a result, Fig. 4 demonstrates that
even with complete rotor failure, the bi-copter can perform
position control robustly in the presence of wind disturbances
using the proposed controller (specifically, λ2 = 0).
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Fig. 4. Simulation of a Bi-copter with Complete Rotor Failure: The bi-
copter hovers at approximately -18 meters, as shown in the green area.
At 7 seconds, λ2 = 0 is injected, after which the bi-copter tracks the
desired trajectory. Additionally, a constant wind disturbance of dlinear =[
2 0 0

]T N is added along xe within the red area.

D. Case 3: Position Control with Servo being Stuck at ±0.5

The simulations with servo stuck failure are also con-
ducted, as shown in Fig. 5. The servo is stuck at ±0.5 rad,
specifically α2 = αmin,2 = αmax,2 = ±0.5. The reference
trajectory is set to be the same as that in Case 2. Similar
phenomena are observed, such as the stabilization of en.
According to the results, the angular velocity in simulation
(a) is notably larger than that in simulation (b), indicating a
more stable spinning. Benefiting from the stable spinning,
the averaged thrust direction en, as shown in simulation
(a), exhibits a smoother response during trajectory tracking
compared to simulation (b). Furthermore, the thrusts in
(a) and (b) differ significantly due to the opposite servo
angle. The total thrust in (a) is larger than that in (b),
indicating more energy is used for force counteraction and
rotation promotion, which is inefficient. Therefore, the servo
being stuck at −0.5 rad is more challenging than at +0.5
rad. Even so, Fig. 5 still indicates that the bi-copter using
the proposed controller is capable of position control and
robustness against wind disturbances despite the servo being
stuck at ±0.5 rad.

V. DISCUSSION

In Section IV, numerical simulations are conducted. Ac-
cording to the simulation results, the objective of this study
has been achieved. However, for experimental validations,
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Fig. 5. Simulations of the Bi-copter with the Servo Stuck at −0.5rad and
0.5rad are Shown in Column (a) and Column (b): The bi-copter hovers at
approximately -18 meters, as shown in the green area. At 7 seconds, the
servo fault is injected, after which the bi-copter tracks the desired trajectory.
Additionally, a constant wind disturbance of dlinear =

[
2 0 0

]T N is
also added along xe within the red area.

much more effort should be invested. Real servos in bi-
copters are typically nonlinear systems, but this study models
them using a first-order model in simulation, which may sig-
nificantly impact experimental results. Additionally, the gears
of the servos are susceptible to wear during experiments,
which may make the tests difficult to carry out. Therefore,
designing a new FTC-friendly bi-copter is a pressing issue
that requires immediate attention.

VI. CONCLUSION AND FUTURE WORK

This study has designed a relaxed hover solution based
control scheme for bi-copters subject to rotor or servo stuck
failure. Numerical simulations were conducted to validate the
effectiveness of the control scheme. Its robustness to constant
wind disturbance and rotational damping uncertainty was
also evaluated. In future work, building upon this study, our
focus will be on designing bi-copters and conducting real-
flight experiments.
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assessment of actuator architectures for unmanned aircraft,” Journal
of Aircraft, vol. 54, no. 3, pp. 955–966, 2017.

[5] S. Park, J. Bae, Y. Kim, and S. Kim, “Fault tolerant flight control
system for the tilt-rotor UAV,” Journal of the Franklin Institute, vol.
350, no. 9, pp. 2535–2559, 2013.

[6] H. Bhardwaj, X. Cai, S. K. H. Win, and S. Foong, “Design, modeling
and control of a two flight mode capable single wing rotorcraft with
mid-air transition ability,” IEEE Robotics and Automation Letters,
vol. 7, no. 4, pp. 11 720–11 727, 2022.

[7] A. S. Saeed, A. B. Younes, S. Islam, J. Dias, L. Seneviratne, and
G. Cai, “A review on the platform design, dynamic modeling and con-
trol of hybrid UAVs,” in 2015 International Conference on Unmanned
Aircraft Systems (ICUAS), 2015, pp. 806–815.

[8] Y. Qin, W. Xu, A. Lee, and F. Zhang, “Gemini: A compact yet
efficient bi-copter UAV for indoor applications,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 3213–3220, 2020.

[9] M. W. Mueller and R. D’Andrea, “Relaxed hover solutions for mul-
ticopters: Application to algorithmic redundancy and novel vehicles,”
The International Journal of Robotics Research, vol. 35, no. 8, pp.
873–889, 2016.

[10] C. Ke, K.-Y. Cai, and Q. Quan, “Uniform passive fault-tolerant
control of a quadcopter with one, two, or three rotor failure,” IEEE
Transactions on Robotics, vol. 39, no. 6, pp. 4297–4311, 2023.

[11] F. Nan, S. Sun, P. Foehn, and D. Scaramuzza, “Nonlinear mpc
for quadrotor fault-tolerant control,” IEEE Robotics and Automation
Letters, vol. 7, no. 2, pp. 5047–5054, 2022.

[12] J. I. Giribet, R. S. Sanchez-Pena, and A. S. Ghersin, “Analysis
and design of a tilted rotor hexacopter for fault tolerance,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 52, no. 4,
pp. 1555–1567, 2016.

[13] L. J. Colombo and J. I. Giribet, “Learning-based fault-tolerant control
for an hexarotor with model uncertainty,” IEEE Transactions on
Control Systems Technology, vol. 32, no. 2, pp. 672–679, 2024.

[14] W. Zhang, M. W. Mueller, and R. D’Andrea, “Design, modeling and
control of a flying vehicle with a single moving part that can be
positioned anywhere in space,” Mechatronics, vol. 61, pp. 117–130,
2019.

[15] W. Zhang, M. W. Mueller, and R. D’Andrea, “A controllable flying
vehicle with a single moving part,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA), 2016, pp. 3275–
3281.

[16] C. Ke, K.-Y. Cai, and Q. Quan, “Uniform fault-tolerant control
of a quadcopter with rotor failure,” IEEE/ASME Transactions on
Mechatronics, vol. 28, no. 1, pp. 507–517, 2023.

[17] R. I. Leine, G. Capobianco, P. Bartelt, M. Christen, and A. Caviezel,
“Stability of rigid body motion through an extended intermediate
axis theorem: application to rockfall simulation,” Multibody System
Dynamics, vol. 52, no. 4, pp. 431–455, 2021.

[18] M. W. Mueller and R. D’Andrea, “Stability and control of a quadro-
copter despite the complete loss of one, two, or three propellers,”
in 2014 IEEE International Conference on Robotics and Automation
(ICRA), 2014, pp. 45–52.

[19] B. A. S. van Schijndel, S. Sun, and C. De Visser, “Fast loss of
effectiveness detection on a quadrotor using onboard sensors and a
kalman estimation approach,” in 2023 International Conference on
Unmanned Aircraft Systems (ICUAS), 2023, pp. 1–8.

[20] B. Ghalamchi, Z. Jia, and M. W. Mueller, “Real-time vibration-based
propeller fault diagnosis for multicopters,” IEEE/ASME Transactions
on Mechatronics, vol. 25, no. 1, pp. 395–405, 2020.

[21] M. D. Shuster, “A survey of attitude representations,” Navigation,
vol. 8, no. 9, pp. 439–517, 1993.

[22] D. P. Bertsekas, “Dynamic programming and optimal control,” Athena
Scientific, 1995.

[23] Mathworks.com, “Simulink,” https://www.mathworks.com/products/
simulink.html, accessed: March 6, 2024.

[24] ——, “Choosing the algorithm,” https://www.mathworks.com/help/
optim/ug/choosing-the-algorithm.html, accessed: March 6, 2024.

[25] R. Mahony, T. Hamel, and J. M. Pflimlin, “Nonlinear complemen-
tary filters on the special orthogonal group,” IEEE Transactions on
Automatic Control, vol. 53, no. 5, pp. 1203–1218, 2008.

[26] K. Ogata, Discrete-time Control Systems. Prentice Hall, 1995.

15523


